
Scientific Visualization, 2021, volume 13, number 4, pages 111 - 126, DOI: 10.26583/sv.13.4.09

Spherical Lenses for Virtual Optic Experiments

V.A. Debelov1,A, N.Yu. Dolgov2,B

A Institute of Computational Mathematics and Mathematical Geophysics SB RAS

B Novosibirsk State University

1 ORCID: 0000-0002-7577-4700, debelov@oapmg.sscc.ru
2 ORCID: 0000-0001-5622-3586, nikitabrn1999@gmail.com

Abstract
While the mathematical modeling of optical phenomena, a computer calculation is often

performed, confirming the conclusions made. To do this, a virtual computer model of the
optical installation is created in the form of a 3D scene. Also, virtual scenes are often used in
training when creating presentations.

This paper describes computer models of spherical lenses and the calculation of
interaction of linear polarized light rays with them. It is focused on applications that use ray
tracing. It is known that light of any polarization can be represented on the basis of the
mentioned one. The reflected and all rays passing through the lens that arise due to internal
reflections are calculated from the ray incident on the scene object. The number of internal
reflections is set by the parameter. All output rays are calculated based on the application of
Fresnel’s equations and are characterized by intensity values and polarization parameters.

We selected spherical lenses since they are most often used in optic installations. They
are constructed on the basis of the application of the set-theoretic intersection of geometric
primitives: a half-space, a sphere, a cone, a cylinder and their complements to the scene
space. An advanced user can build their own objects by analogy, for example, cylindrical
lenses.

Keywords: optical experiment, virtual scene, spherical lenses, optically isotropic
objects, linear polarized light.

1. Introduction
In the mathematical modeling of natural phenomena, computer experiments are often

performed with the similar computer model to confirm its reliability. The construction and
analysis of a mathematical model often leads to the creation of a 3D scene, which is a
virtual analogue of a real installation. Another area of creating virtual 3D scenes is
education, especially when it is necessary to demonstrate a phenomenon physically
correctly. In optics, when obtaining images, lenses are used in one way or another, for
example, a lens, an eyepiece, an eye.

The idea to develop a library of lenses arose after in experiments on interference
simulation, we often had to change the shape and parameters, and even the type of lens.
We came to the conclusion that such objects should be isolated so that the corresponding
software modules are responsible for their interaction with linear polarized light rays. Why
linear polarized light?

1. Historical background. In connection with the development of algorithms for
photorealistic visualization of scenes involving optically anisotropic transparent crystals,
only polarized, moreover, linear polarized rays were considered, since a light ray with any
polarization incident on these crystals generates up to four linear polarized rays (up to two
reflected and two refracted) at the boundary [1].

https://doi.org/10.26583/sv.13.4.09
mailto:debelov@oapmg.sscc.ru
mailto:nikitabrn1999@gmail.com

2. This does not limit the freedom of choice. Light of any polarization (unpolarized,
partially polarized, polarized) can be represented as a combination of a certain number of
linear polarized rays with a lower intensity, see [1].

3. Please note one very important property for ray tracing: when a ray falls on an
optically isotropic object, regardless of the state of polarization, the trajectory of the ray is
the same. The polarization of the incident ray affects the state of polarization and the
intensity of the reflected and refracted rays obtained when interacting with the surface.
This is especially evident when performing calculations using Fresnel’s formulas [1, 2].
This property does not hold for anisotropic objects.

In [2], the prerequisites for the development of computer models of lenses, new
features compared to existing software were identified. Thus, this article is a natural
continuation of the work [2]. First of all, we paid attention to spherical lenses, as the most
common ones. Indeed, in the vast majority of cases, in order to visualize the required
optical effects, it is necessary to introduce a lens (camera lens, etc.) into a virtual scene, as
well as into a real experience stage.

The main purpose of the development is to provide a researcher or an application
programmer with the tools to create their own standalone application for modeling optical
phenomena in a generally accepted language (for example, C++). Various technical issues
can be solved by using suitable libraries in the same language.

In the second section, similar works are considered in order to more clearly show the
niche for the created library of spherical lenses. The third section is devoted to the
description of the contents of the created lens library and the proposed principles of lens
design. The fourth section is devoted to the conclusions.

2. Previous work
Modern renderers do not work with polarized light, so you need to look for the

necessary tools in another field related to optics. Indeed, many means of developing optical
devices or optical design systems have been developing for a very long time and are quite
representative. For example, widely known systems: ASAP [3], TracePro [4], Code-V [5],
FRED [6], Zemax [7]. You can continue, because there are at least a dozen of them. We
looked at such systems from a slightly different angle in [2]. These programs allow you to
perform geometric modeling of various geometric shapes and, accordingly, lenses. Various
physical characteristics that are inherent in real objects can be assigned to objects.
Including the optical properties of real objects. Rich sets of lenses with various geometric
shapes have been created. Moreover, developers of various software products are familiar
with the developments of competitors or colleagues. Consider for example the optical
design system OptTaliX [8]. Among other operations, it allows its users to perform the
following actions:

• Import lenses and related data from Code-V, Zemax and a number of others.
• Export lens data to Zemax, ASAP and others.
There are references to FRED, TracePro and a number of others in the manual [9].

Finally, the OpTaliX user manual (pages 476 and 477 [9]) suggests using models of real
lenses from lens catalogues of various manufacturers and distributors. It can be concluded
that most optical design systems are connected to a certain extent, by the data, models of
optical objects.

It should be noted that within the framework of the mentioned programs, it is possible
to perform a physically correct calculation of the passage of light in the constructed optical
installations. Calculations are made both in the ray and in the wave formulation. This
means that within the design of these systems, the functions of physically correct behavior
of light in various situations, i.e. the functional core, have been implemented and debugged
for a long time. But it turns out that there is no open set of libraries, there is no open SDK
from which a programmer can take and use the desired function. On the contrary, a dialog

interface is being built on the core and is being expanded with each new version of the
software product.

The following simple thought comes to mind. Since so many commercial optical design
systems coexist peacefully, it means that another one can be made. But to do this, you must
first develop the core.

Undoubtedly, within the framework of these systems, much of what we needed to solve
was done, namely, interaction with the boundary of optically isotropic transparent media
of a ray of polarized light. It is not possible to adapt these systems for the following
reasons. The systems are closed, very cumbersome and expensive, focused on the
construction (geometric and optical modeling) and calculation of paths and rays of light in
a complex optical system, to assess the parameters of the beam (ray) at a particular point
in the scene. Please note that they are not focused on obtaining photorealistic images.

When developing renderers, special attention is paid to the possibility of their practical
application, especially the calculation speed. It is appropriate to mention the opinion of an
authoritative expert, which quite accurately defines the difference between the
development of optical design systems and the development of a renderer. In the work [10]
Glassner was quite accurate: "As almost always seems to be the case, writing a good shader
seems to involve some judicious trading off of accuracy and realism with approximations
and pragmatism. I mean, we could simulate all of this at the molecular or even atomic
level, but it wouldn’t show up in the results. The trick is to find a nice balance between
simplicity, efficiency, and verisimilitude".

3. Library of spherical lenses
The lens library was built to unite computer models of lenses and make it easier for the

user to design spherical lenses, add them to a 3D scene, and process the interaction of rays
of linear polarized light with them. This section describes the requirements that the
software and its implementation must meet. The book [11] describes in detail all types of
thin spherical lenses. Since this is the most common type of lenses, we decided to provide
users of the software package with a simple design of all six types of spherical lenses:
biconvex, plano-convex, concave-convex, biconcave, plano-concave, convex-concave (see
Fig. 1). Each lens can have a cylindrical or conical rim. The rim is the surface of the lens
attachment; it can be made of both transparent (working surface) and opaque material. We
decided not to limit ourselves to only thin lenses, but to allow the use of similar geometric
shapes of any size. Moreover, since we perform physically correct ray tracing, there are no
problems with accuracy as in the cases of using the formulas of thin [11] or thick lenses
[12].

Fig. 1. Six types of spherical lenses: biconvex, plano-convex, concave-convex, biconcave,

plano-concave, convex-concave. The image is taken from [11].

Our experience has shown that the set of these lenses significantly facilitates the

creation of scenes and the execution of virtual optical experiments. Please note that even
complex optical devices, for example, polarizing microscopes (see Fig. 2), are constructed
mainly with the help of these lenses: each transparent object in the design of the
microscope is a simple spherical lens or is composed of several spherical lenses [13].

Since it is necessary to take into account the polarization of light to calculate
interference, the software package must be able to process the interaction of rays of linear
polarized monochromatic light with lenses. When tracing a ray through a lens, according
to [2], three possible events are taken into account:

• Event 1. Total internal reflection (TIR). In this case, the user can receive two
calculated linear polarized rays, and further ray tracing stops.

• Event 2. In this case, the user receives the ray that hits the rim and the coordinates
of the hit point, as well as further ray tracing stops.

• Event 3. The next output ray of linear polarized light has been successfully
calculated, or the specified tracing depth inside the lens has been reached. Tracing depth is
determined by a separate parameter. For example, if the user has set the tracing depth 𝑘,
then 𝑘 + 1 output rays should be calculated (see Fig. 3).

Fig. 2. On the left is a polarizing microscope (photo from [14]), on the right are
the components of the device of a polarizing microscope (from the book [13]).

Fig. 3. Subtree of rays of depth 5 in the lens. Notation: 𝑅𝑖𝑛 is incident ray, 𝑂𝑢𝑡∗ are

rays coming from the lens, 𝑃∗ are treetops (nodes), 𝐸∗ are internal
reflected rays (image from [2]).

To construct lenses, a set-theoretic intersection operation is used over several

geometric primitives. The set of primitives includes a half-space, a part of the space inside
or outside a sphere, a cylinder, a cone. We consider only objects with a simply connected
boundary.

3.1 Half-space
The half-space of the scene can be set by specifying a plane in three-dimensional space

using a point and a normal. The normal indicates the selected half of the scene space (Fig.
4). Here and further, the wire cube denotes a 3-dimensional space.

Fig. 4. The plane with the normal 𝐧 separates the half-space.

3.2 Space inside or outside the sphere
The sphere is defined by the center C(𝑥𝑐, 𝑦𝑐, 𝑧𝑐), the radius 𝑅 and the Boolean sign

INSIDE: true means that the inner region is taken, if false, then the complement to the
space is taken, see Fig. 5.

Fig. 5. Part of the space inside or outside the sphere. 𝐶 is the center of

the sphere, 𝑅 is the radius of the sphere.

3.3 Space inside or outside the cylinder
The infinite cylinder can be set using the coordinates of a point on the axis of rotation,

the direction of the axis of rotation, and the radius of the circle. The point is needed to link
the vector of the axis of rotation to a certain place in space. Similarly, there are two
possible options: a part of the space inside or outside the cylinder is taken (see Fig. 6).

Fig. 6. Part of the space inside or outside the cylinder. 𝑂 is arbitrary point of

the cylinder axis, 𝑯 is the axis vector, 𝑅 is the radius of the circle.

3.4 Space inside or outside the cone
The infinite cone is a second-order surface generated by the motion of a straight line

(generatrix) passing through a fixed point. In this case, the cone can be set by the
coordinate of the vertex of the cone, the vector of the axis of the cone and the value of the
angle at the vertex of the cone, i.e., the doubled angle between the axis and the generatrix.
As in the case of a sphere, in order to define the primitive completely, it is specified which
part of the space is taken: inside or outside the cone (see Fig. 7).

Fig. 7. Part of the space inside or outside the cone. 𝑂 is the vertex of the cone, 𝜑 is

the angle at the vertex, 𝑯 is the axis vector.

3.5 An example of constructing a lens from primitives
Let us consider the application of the set-theoretic intersection operation on a set of

primitives by constructing a certain lens. Let us take for example a biconvex lens. We will
set in the scene space the coordinates of the lens center point 𝐶, the unit vector of the main
optical axis of the lens 𝒂𝒙𝒊𝒔 and the width of the lens 𝑤𝑖𝑑𝑡ℎ, see Fig. 8. A biconvex lens has
two spherical surfaces, let us denote their radii 𝑅𝑓𝑟𝑜𝑛𝑡 and 𝑅𝑏𝑎𝑐𝑘. Obviously, the following

conditions must be met:

𝑤𝑖𝑑𝑡ℎ > 0 & 𝑅𝑓𝑟𝑜𝑛𝑡 ≥
𝑤𝑖𝑑𝑡ℎ

2
 & 𝑅𝑏𝑎𝑐𝑘 ≥

𝑤𝑖𝑑𝑡ℎ

2
.

Let us find the centers of the spheres. If the radius of the sphere 𝑅𝑓𝑟𝑜𝑛𝑡 is the radius of

the curvature of the surface in the positive direction of the 𝒂𝒙𝒊𝒔 vector, then the center of
this sphere is at the point

𝑂1 = 𝐶 − 𝒂𝒙𝒊𝒔 · (𝑅𝑓𝑟𝑜𝑛𝑡 −
𝑤𝑖𝑑𝑡ℎ

2
).

Similarly, the center of a sphere with radius 𝑅𝑏𝑎𝑐𝑘 is at the point

𝑂2 = 𝐶 + 𝒂𝒙𝒊𝒔 · (𝑅𝑏𝑎𝑐𝑘 −
𝑤𝑖𝑑𝑡ℎ

2
).

If the above conditions are met, such spheres will have a non-zero intersection of the
𝑤𝑖𝑑𝑡ℎ (see Fig. 8). The intersection of the spheres gives a biconvex lens without a rim.

Fig. 8. A biconvex lens is formed at the intersection of the spheres. There is a lens with a

cylindrical rim on top, and a lens with a conical rim at the bottom.

Let us add a cylindrical rim to the resulting lens, which is formed when adding a part
of the space inside the cylinder to the set of primitives, i.e. the intersection of two spheres
and the interior of the infinite cylinder. The cylinder has a rotation axis 𝑯 = 𝒂𝒙𝒊𝒔 and a
starting point 𝑂 = 𝐶. Let ℎ𝑚𝑎𝑥 be the maximum height of the lens, then the radius of the

cylinder 𝑅𝑐𝑦𝑙 ≤
ℎ𝑚𝑎𝑥

2
. If this condition is met, a lens similar to the top one shown in Fig. 8

will be obtained.
To set a conical rim, you must specify the vertex 𝑉𝑐𝑜𝑛𝑒 and the angle 𝜑 of the cone,

which will cut off the excess part of the lens. The angle 𝜑 should be such that the cone has
an intersection with the lens. The vertex of the cone is given by the distance 𝑑𝑠𝑡𝑣𝑒𝑟𝑡𝑒𝑥 from
the center of the lens along the main optical axis, then the vertex of the cone can be found
by the formula

𝑉𝑐𝑜𝑛𝑒 = 𝐶 + 𝒂𝒙𝒊𝒔 · 𝑑𝑠𝑡𝑣𝑒𝑟𝑡𝑒𝑥 .

The condition |𝑑𝑠𝑡𝑣𝑒𝑟𝑡𝑒𝑥| ≥
𝑤𝑖𝑑𝑡ℎ

2
 must be met, and 𝑑𝑠𝑡𝑣𝑒𝑟𝑡𝑒𝑥 can be either positive or

negative (see Fig. 8).
Important note: the axis of the rim coincides with the axis of the lens.
The library provides specialized constructors and allows the user to avoid difficulties

and errors when designing lenses using set-theoretic intersection.
Below we show how one can create a biconvex lens with a conical or cylindrical rim

using the appropriate constructor.
In addition to geometric parameters, refraction indices or materials of the lens interior

and the external environment are also set.
3.6 Implementation
The software package is designed as a set of libraries in the C++ programming

language. For all six types of spherical lenses, constructor classes are implemented.
Examples of possible lenses are shown in Fig. 9. When designing the lens, the correctness
of the parameters set by the user is checked. If it is impossible to construct the correct lens
based on the parameters, the user receives an error in the form of an exception.

Let us represent a linear polarized zero-thickness tracing ray with attributes based on
the work [7] in the form

𝑅 = {𝑃0, 𝐝, 𝐗, 𝐘, 𝐼, 𝜆, 𝐿𝑖𝑑 , 𝑂𝑝, 𝛴}, (1)
where: {𝑃0, 𝐝} is the mathematical ray, 𝑃0 is the origin of the ray, 𝐝 is the direction,

{𝐗, 𝐘, 𝐝} is the associated right-hand coordinate system. In other words, the ray is
represented as

𝑃(𝑡) = 𝑃0 + 𝑡 × 𝐝.
The oscillations of the electric vector of electromagnetic wave occur along the 𝐗 axis, 𝐼

is the intensity, 𝜆 is the wavelength of the light, 𝐿id is the identifier of the point light source
that generated the ray. Two rays are coherent if their source IDs are non-zero and match.
𝑂𝑝 is the optical path of a geometric path traveled from the source, which is used to
calculate the current phase of the electromagnetic wave [1]. 𝛴 is the phase jump
accumulated during reflections from a denser medium, see [2, 7] for details.

Fig. 9. All types of spherical lenses supported by the software package.

The generated rays (reflected and refracted) inherit some of the attributes, or they are

recalculated during the contact of the incident ray with the scene surface. Note that the
Fresnel’s equations apply.

A corresponding data structure was written for each type of primitive. The primitive is
defined, firstly, by the parameters that determine its geometry and location in space, and
secondly, by the refraction indices of two media: belonging (interior) and not belonging to
the primitive (medium). Basic operations on primitives are the following:

• Use a given point to determine whether it belongs to a primitive.

• Using a given geometric ray, if possible, calculate: a) the value of the parameter 𝑡 for
the point of its intersection with the primitive boundary, b) the coordinates of the
intersection point, c) the normal vector at this point. There may be several such points.

The lens is represented as a list of primitives. When tracing, it is necessary to
determine which primitive the ray falls on, the coordinates of the hit point, the normal at
this point, and the refraction indices of the media. Knowing these values, it is possible to
calculate the reflected and refracted rays using Fresnel's formulas. To perform the
intersection operation, it is necessary to check for each point that it belongs to all the
primitives of the lens list.

Based on the example, we will consider how the set-theoretic intersection operation is
implemented. It is based on the well-known even-odd principle when calculating
intersections of a ray with the boundaries of primitives. In Fig. 10, the ray 𝑅 falls on the
surface of a lens constructed from two primitives: parts of space inside spheres with
centers 𝑂1, 𝑂2. The ray 𝑅 crosses the boundary of the Primitive 𝑃𝑟𝑖𝑚1 at points 𝐴 and 𝐶,
the boundary of the Primitive 𝑃𝑟𝑖𝑚2 at points 𝐵 and 𝐷. Thus, we get a set of values of 𝑡:

𝑡(𝐴, 𝑃𝑟𝑖𝑚1) – 𝑡(𝐶, 𝑃𝑟𝑖𝑚1) – 𝑡(𝐵, 𝑃𝑟𝑖𝑚2) – 𝑡 (𝐷, 𝑃𝑟𝑖𝑚2),
sort it in ascending order 𝑡:

𝑡(𝐴, 𝑃𝑟𝑖𝑚1) – 𝑡(𝐵, 𝑃𝑟𝑖𝑚2) – 𝑡(𝐶, 𝑃𝑟𝑖𝑚1) – 𝑡(𝐷, 𝑃𝑟𝑖𝑚2),
analyze the sequence and find the segment 𝐵𝐶 belonging to both primitives, i.e. to

their intersection.

We have considered the simplest case of the mutual arrangement of the ray and the
boundaries of primitives. A well-known problem is when the ray hits the intersection point
of the primitives themselves. In order to have an accurate idea of how to perform sorting, a
different implementation was made for each type of lens.

When creating a lens, the user sets handlers for the three above-mentioned events he is
interested in. A user can use the standard or default handlers already included in the
library, or implement them himself. Each of the three possible events has its own handler
class interface. Let us look at the work of standard handlers.

Fig. 10. Intersection points of the ray 𝑅 with primitives.

The handler for the next calculated output ray allows the user to get a list of calculated

output rays after the tracing is completed.
The handler for the case of total internal reflection allows the user to check whether a

total internal reflection has occurred after the tracing is completed and, if it has occurred,
to obtain two calculated linear polarized rays (see [2, 15]).

The handler for the case of a ray hitting the rim allows the user, after the tracing is
completed, to check whether a certain ray has hit the rim and, if it has happened, to get
this ray and the coordinates of the hit point.

The handlers are installed after the lens is set. Different lenses may have different
handlers. After setting the handlers, the user can trace the ray through the lens. To do this,
the user needs to set the input ray, the tracing depth, the energy level of the ray 𝜀, at which
further tracing stops, the lens through which the tracing will be performed, and finally calls
the tracing function.

3.7 Additional library objects
Spherical lenses represent only the starting set of the library. Already in the course of

our experiments, we were faced with the need for such basic geometric shapes as a cube for
the instrument glass, a cylinder for the instrument glass, a wedge for experiments with
interference. We illustrate these additional objects in Fig. 11.

Fig. 11. Additional forms for the interference experiment.

Advanced users can create their own additional forms in a similar way. They should

keep in mind possible collisions at the intersection points of two or more primitives and
correctly handle in case of a ray hitting such points.

3.8 Sample application
Let us look at the skeleton of a simple application that simulates the passage of rays in

a scene consisting of a source, spherical lenses and a screen. Let the light source emit all
the rays at once, and we form a set 𝑆𝑅 of linear polarized rays from them. Each ray is
described by a starting point and direction:

struct LENS_RAY {

 CLENSVector p0, dir;

};

And the information load for the ray has the form:
struct LENS_PAYLOAD { // see formula (1)

 double lambda; // wavelength

 double amplitude; // the amplitude of oscillations
 // of the electric field

 double deltaPhase; // accumulated jumps of phase

 double oPath; // the optical path traversed by the ray

 int ch; // coherence ID

 CLENSVector vp; // polarization vector

};

The ray together with the load is set by the structure:

struct LENS_RAY_STORAGE {

 LENS_RAY ray;

 LENS_PAYLOAD payload;

};

Let us introduce a set of lenses 𝑆𝐿. We proceed to the declaration of another spherical
lens, namely a biconvex lens with a conical rim using the appropriate constructor (see Fig.
8):

using namespace Lens;

double cone_angle = 30;

double vert_dist = 100;

/* Create biconvex lens */

BiconvexLensBuilder builder;

LENS_DATA lens = builder.set_axis(CLENSVector{1, 0, 0})

 .set_center(CLENSVector{0, 0, 0})

 .set_front_radius(200)

 .set_back_radius(400)

 .set_width(50)

 .set_inner_material(GLASS_INDEX)

 .set_outer_material(AIR_INDEX)

 // Specify conical opaque rim

 .set_rim(coneRim(vert_dist, cone_angle, BORDER))

 .build();

The cylindrical rim is set similarly using the following line
 .set_rim(cylinderRim(cylinder_radius, BORDER)).

One can see that in addition to geometric parameters, refraction indices or materials of
the lens interior and the external environment are also set.

And add this lens to 𝑆𝐿.
Next, we set reactions to events using standard handlers that are available in the

library and provide the most natural operations with lenses.
LENS_DATA lens = /* . . . declared above */;

/* set default library handlers */

lens.setRayCallback(DefaultRayCallback::create());

lens.setRimCallback(DefaultRimCallback::create());

lens.setTIRCallback(DefaultTIRCallback::create());

Let us trace the ray through the 𝐿𝑒𝑛𝑠.
/* Starting point and direction */

CLENSVector p0 = { 0, 0 ,0 };

CLENSVector dir = { 1, 0, 0 };
/* Geometrical ray */

LENS_RAY ray = { p0, dir };

/* Information load */

LENS_PAYLOAD payload = /*....*/;

/* Incident linear polarized ray */
LENS_RAY_STORAGE input_ray = { ray, payload };
/* Tracing depth */

LENS_MODE mode = {5};
/* Tracing */

const int result = lensTrace(input_ray, mode, lens);

After the trace is executed, the user can get the result and apply the appropriate
handler. The value returned by the tracing function is the code of the last event that
occurred:

• FRESNEL_SUCCESS means that the required number of rays has been successfully
calculated,

• FRESNEL_RIM means a ray was found that hit the rim,

• FRESNEL_TIR means the case of total internal reflection,

• FRESNEL_DATA_ERROR means that error in user data is detected,

• FRESNEL_NO_ENERGY means that the incident ray has an energy less than 𝜀,
• FRESNEL_NO_INTERSECTION means that the ray does not intersect with the

lens.
In the first three cases, the programmer can get data using handlers if he has installed

them.
if (const auto& callback = lens.getRayCallback()) {

 /* Get a list of calculated output rays */

 std::deque<LENS_RAY_STORAGE> rays = callback->getRays();

 /* */

}

if (const auto& callback = lens.getTIRCallback()) {

 /* Obtain two calculated rays due to
 the case of total internal reflection */

 if (callback->hasTIR()) {

 std::array<LENS_RAY_STORAGE, 2>
 TIR_rays = callback->getTIRRays();

 /* */

 }

}

if (const auto& callback = lens.getRimCallback()) {

 /* Get the ray that hits the side and the coordinates
 of the hit point on this side */

 if (callback->hasRimIntersection()) {

 /* Hit point and ray */

 CLENSVector point = callback->getRimPoint();

 LENS_RAY_STORAGE ray = callback->getRay();

 /* */

 }

}

Finally, all the fragmentary operations are defined and we can proceed to consider the
structure of the application.

First, we should specify the screen. In order not to program the search for the
intersection of rays with the screen separately, we can set it in the form of a thin
rectangular parallelepiped (see Fig. 11) and set the trace depth equal to zero. In other
words, it is enough for us to catch only the fact that the tracing ray hits it. And by the
starting point of the reflected vector, we determine a specific pixel. This element of the
scene is also placed in a set of lenses 𝑆𝐿.

So, we have a set of original light rays 𝑆𝑅 and a set of lenses 𝑆𝐿. Then the pseudocode
of the application looks as follows.

While (𝑆𝑅 is not empty) {

1. Take a ray 𝑅 from 𝑆𝑅 and remove it from 𝑆𝑅

2. Look for the nearest intersection of 𝑅 with the objects of the set 𝑆𝐿 via function

trace

3. If intersection found {

Get the necessary information using proper handlers

}

4. If the result of trace is FRESNEL_SUCCESS {

 Add all output rays to SR}

}

Obviously, the screen handler will collect information from all the rays that hit it and
identify proper pixels. It remains only to build an image.

3.9 Function Fresnel: base level of library
Tracing is carried out by rays of linear polarized light. To calculate their interaction

with optically isotropic transparent objects, the Fresnel function is developed, which,

based on the application of the Fresnel’s equations and the parameters of the ray incident
on the boundary between two optically isotropic transparent media, calculates the
characteristics of the generated reflected and refracted rays: direction, polarization, and
others according to the representation (1). This function also determines the events of total
internal reflection and others mentioned above.

4. Conclusions
In this paper, we described the current state of the development of Library of spherical

lenses. Testing and debugging were carried out on simple scenes, for example, calculating
interference patterns related to fringes of equal thickness [1, 11], including the calculation
of Newton's rings in transmitted and reflected light.

We are planning to expand it step by step with other types of geometric shapes:
cylindrical and aspherical lenses, other optically isotropic transparent objects necessary for
particular experiments, etc.

Note that the library allows one to find out all the data about the progress of ray
tracing in the lens (see Fig. 3), and, therefore, the user can link the movement of the rays to
the virtual scene, and prepare presentations and reports on the flow of the experiment.
Once again, we note that the use of lenses from our library can be done in some part of the
user's program. In other part of the program, he can use other objects and lenses from
other libraries along with ours.

In our opinion, such autonomous work serves as a convenient means to verify certain
solutions. It is likely that in the future the proposed and tested approaches will be adapted
one way or another in new versions of existing software.

This work was carried out under state contract with ICMMG SB RAS (0251-2021-
0001).

References
1. Born M., Wolf E. Principles of optics: Electromagnetic theory of propagation,

interference and diffraction of light. Cambridge University Press, 1980.
2. Debelov V. A., Kushner K. G., Vasilyeva L. F. Lens for a Computer Model of a

Polarizing Microscope // Mathematica Montisnigri, Vol. 41, pp. 151–165, 2018.
3. ASAP Optical Software, https://www.photonicsonline.com/doc/asap-optical-

software-0001. Accessed 15 Oct 2021.
4. Tracepro, illumination and non-imaging optical design & analysis tool,

https://www.lambdares.com/tracepro/. Accessed 15 Oct 2021.
5. Optical Design Software - CODE V | Synopsys, https://www.synopsys.com/optical-

solutions/codev.html. Accessed 15 Oct 2021.
6. FRED Software | Photon Engineering, https://photonengr.com/fred-software/.

Accessed 15 Oct 2021.
7. OpticStudio – Zemax https://www.zemax.com/pages/opticstudio. Accessed 15 Oct

2021.
8. OpTaliX: Optical Design Software http://www.optenso.com/index.html. Accessed

15 Oct 2021.
9. OpTaliX: Reference Manual, Version 11.10, 2021, http://www.optenso.com/

download/optalix_reference.pdf. Accessed 15 Oct 2021.
10. Glassner A. S. Andrew Glassner's notebook soap bubbles: Part 2 // IEEE Computer

graphics and applications, Vol. 20, No. 6, pp. 99–109, 2000.
11. Landsber G. S. Optika [Optics], 6th ed. Moscow: FIZMATLIT, 2003 [in Russian].
12. Heidrich W., Slusallek P., Siedel H.-P. An image-based model for realistic lens

systems in interactive computer graphics // Proceedings of Graphics Interface ‘97,
Canadian Information Processing Society, 1997, pp. 68–75.

13. Fedotov G. I., Ilin R. S., et al. Laboratory optical devices. Textbook for optical
specialties of Universities, 2nd ed. Moscow: Mashinistroenie, 1979. [In Russian].

14. Laboratory polarizing microscope of transmitted light, 2021. URL:
http://www.lomo.ru/production/grazhdanskogo-naznacheniya/mikroskopy/mikroskopy-
tekhnicheskie/polam-l-213m/. Accessed 15 Oct 2021.

15. Debelov V. A., Vasilieva L. F. Visualization of interference pictures of 3D scenes
including optically isotropic transparent objects // Scientific visualization, 2020, Vol. 12,
No. 3, pp. 119–136. (doi:10.26583/sv.12.3.11)

	1. Introduction
	2. Previous work
	3. Library of spherical lenses
	3.1 Half-space
	3.2 Space inside or outside the sphere
	3.3 Space inside or outside the cylinder
	3.4 Space inside or outside the cone
	3.5 An example of constructing a lens from primitives
	3.8 Sample application
	3.9 Function Fresnel: base level of library

	4. Conclusions
	References

